广西澳洲幸运5开奖记录
學科報告
當前位置: 首頁 > 科技專著>學科報告

運動醫學分會--二十一世紀運動療法新進展

來源: 發布日期:2011-10-27 19:03:04瀏覽:10854次

 

二十一世紀運動療法新進展

勵建安    劉元標

南京醫科大學

澳大利亞昆士蘭科技大學

運動療法是運動醫學與康復醫學的交叉點,也是非藥物治療最重要的組成之一。21世紀以來,運動療法的臨床應用取得了新的進展,現扼要綜述如下。

    一、臟器疾病

1、心血管疾病

1)運動方案制定的個體化:有研究比較12個月的心臟康復、傳統治療和健康宣教的效果,發現心臟康復僅僅使高密度脂蛋白在治療前低于40單位的患者得到了更大幅度的提高1。美國心臟病學會(2007年)強烈建議癥狀限制性運動試驗是所有以運動訓練為主要內容的心臟康復程序的前提條件,需要根據危險度分層制定個體化的運動方案,并根據臨床情況及時調整訓練內容2

2)運動訓練的心血管機制:運動訓練可以通過直接或者反射通路調節心衰患者的交感神經興奮性,如改善壓力反射的敏感性和心率變異、降低血液兒茶酚胺水平、血管緊張素II和血管加壓素以及腦鈉肽等3;也能改善高血壓患者壓力反射的敏感性4。動物實驗表明,長期有氧訓練使慢性心衰新西蘭兔的腎臟交感神經活性降低,改善壓力反射時血壓與心率的關系(從2.2+/-0.2增至4.6+/-0.7 bpm/mmHg, P<0.01)和腎交感神經活性,同時增加銅-鋅超氧化物歧化酶的生成和減少促氧化物的生成。因此,長期運動訓練降低心衰者自主神經活性主要是通過上調中樞抗氧化和抑制中樞促氧化機制共同完成的5。一氧化氮合酶介導運動訓練對缺血-再灌注損傷的保護作用6。循環抗阻訓練使慢性心衰患者肌肉線粒體ATP生成率 (MAPR)、代謝酶活性、毛細血管密度顯著提高;碳水化合物代謝能力增強和最大攝氧量(VO2max)提高;VO2max增加與MAPR具有高度相關性,其中70%的增加是由于MARP增高所致7

3)外周血管疾病的運動治療:雖然間歇性跛行患者單次大負荷運動的急性反應使血管內皮功能下降,但經過較長時間運動治療(3/周,共6周),單次大負荷運動前、后即刻的血管內皮功能指數均比6周前有了顯著提高,說明運動訓練有助于改善患者血管內皮細胞功能,同時延長無疼痛行走距離8。下肢血管旁路移植術后的活動平板訓練(2/周,4~10周)使最大無痛步行距離增加175.4%、踝臂指數增加0.23;而對照組僅分別增加了3.8%0.089

4)訓練方案:心臟康復方案不僅限于運動治療。美國心臟學會、美國心血管和肺康復學會的定義是:心臟康復應同時包括消除危險因素、調整生活方式、減少殘疾發生的所有有效措施2。英國NICE (National Institute for Health and Clinical Excellence) 指南也提出心臟康復是包括運動訓練的綜合措施10。但是運動治療仍然是心臟康復的主要內容2, 11。運動訓練通常包括有氧訓練和抗阻訓練。有氧訓練方案包括步行、平板、自行車、劃船、爬樓梯、踏車訓練等運動方式,強度50~80%VO2max20~60 min/次,3~5/周。而循環抗阻訓練一般是10~15/組、1~3/日。此外還應制定個體化的日常活動方案以增強運動訓練的效果,同時保證活動和運動訓練的安全性2

5)訓練強度:有研究將9對單卵雙生的健康人作為對象,分為大運動量組和低運動量組(兩組VO2MAX差別為18±10%),結果發現兩組對象的心肌血流儲備、心臟血管和外周血管內皮功能均無顯著差別12。尚未確定慢性心衰患者最佳訓練效應的合適強度。Wisloff等比較中等強度運動 (75%最大心率) 和間歇性運動 (95%最大心率) 對心梗后心衰患者的影響,訓練3/周,共12周。結果發現間歇性運動和中等強度運動使VO2max增加46%14%;間歇性運動使左心室舒張末期和收縮末期容量下降18%25%,射血分數 (EF)增加35%,腦鈉肽下降了40%,血管內皮功能和線粒體功能增強13

2、肺疾病 

1)運動耐力:COPD患者運動能力減退常常是由于通氣能力減退和通氣需求增加這一對矛盾引起。近年來逐漸發現運動時給予氧氣補充有助于提高運動能力,有較多研究試圖探討氧療與運動治療結合是否有協同作用從而提高療效。Bradley JM等的臨床薈萃分析提示,無論是需要長期使用氧療還是僅在運動鍛煉時使用氧療的患者,日常活動或運動鍛煉同時進行氧療均有助于提高運動耐力和最大運動能力,改善呼吸困難和提高血氧含量14。但是Nonoyama等綜合5個隨機對照研究后認為,運動中的氧療延長定量運動時間、降低Berg指數;但是對于延長極量運動、功能性運動(如六分鐘步行距離)、生活質量以及血氧濃度等沒有明顯效果15。由于所分析的臨床樣本量較小(31個研究包含549位患者),運動時氧療的效果尚難以做出最后判斷,但是結果仍然證明運動治療可改善患者運動能力和生活質量。

2)康復方案:目前肺康復常采用8周程序16Skumlien等人觀察4周強化康復治療對40GOLD (Global Initiative for Chronic Obstructive Lung Disease) II~IV級患者的影響,并與病情類似的20位患者進行比較。結果每周5次以70%最大運動能力為強度的耐力訓練和每周3~472%15RM為強度的抗阻訓練4周以后,與對照組相比,治療組的生活質量指數 (St George’s Respiratory Questionnaire, SGRQ) 下降了7,上下肢最大收縮力增加6% 15%VO2MAX增加6%,最大工作能力提高60%,平板耐力測試時間延長93%定量負荷下呼吸減慢和呼吸困難癥狀顯著減輕。男性患者6分鐘步行測試增加的距離顯著高于女性17。三周內接受12~15次的連續或者間斷的運動治療后,兩組患者CRDQ生活質量指數、六分鐘步行距離等與治療前相比都有顯著提高,但無組間差異18O’Neill比較6周運動訓練對COPD患者運動功能和慢性呼吸疾病問卷 (Chronic Respiratory Disease Questionnaire, CRDQ) 的影響,結果發現每周1次門診康復治療加2次自我鍛煉與每周2次門診康復治療加1次自我鍛煉(共6周)對運動功能等無明顯影響,但6個月后肺康復療效基本消失19

3)療效維持: Cockram等人總結四年肺康復的經驗后認為,每周一次的社區維持性訓練課加上每周3~5次的自我鍛煉可以維持肺康復的治療效果,平均隨訪18個月以后的重復測量顯示仍然維持相當的鍛煉效果20Spencer等研討每周一次的門診康復治療加家庭內的自我鍛煉8周對肺康復有積極的療效16

3、糖尿病

1)運動訓練量:美國糖尿病學會 (ADA)21、歐洲糖尿病研究會 (European Association for the Study of Diabetes, EASD)22和美國內科醫師學會 (American College of Physicians, ACP)23都對運動的治療作用作了明確的闡述。如美國糖尿病學會指南提出,為了更好控制血糖、維持體重和減少心血管疾病的危險因素,患者應該積極參加每周不少于150分鐘的中等強度有氧運動或者不少于90分鐘的高強度有氧運動,分三天完成,最好能夠隔天參加運動21

2)運動訓練強度:患者參加每周3次的耐力訓練,每次訓練量要達到400kcal;每周2~3次,每次訓練量達到500kcal37, 38。超重或者肥胖而無并發癥的2型糖尿病患者,運動總量不能低于每周1200kcal,大致相當于170~200分鐘或者19km的步行39。抗阻訓練的運動強度是每個肌群完成38~10次以70~80%1RM為阻力的訓練23。同時還需要注意患者并發癥情況,盡可能在運動訓練前接受心電圖負荷試驗以確定恰當的運動強度。此外,盡量避免在同一天對同一組肌群同時進行耐力訓練和抗阻訓練23。單次運動后胰島素敏感性增高可持續2~48小時,因此建議患者可以每天運動訓練,至少隔天要參加運動,不應出現連續兩天不運動的情況21

3)運動降糖機制:單次或長期耐力訓練有助于降低血糖早已公認。運動后即刻胰島素敏感性增強的機制主要包括骨骼肌的糖轉運系統活性增強在運動終止后仍能持續一段時間24、肌糖原和肝糖原儲備在運動中的消耗25以及運動訓練終止后骨骼肌血流量的增加等26。長期耐力訓練可以增強胰島素抵抗者、年輕和老年2型糖尿病患者的胰島素敏感性,也可以改善腦卒中后糖耐量異常者的胰島素敏感性27。可能的機制包括改善機體脂肪代謝28, 29和減輕炎癥反應29、骨骼肌GLUT-4表達增加和一氧化氮誘導的骨骼肌血流增加30以及減少肝糖原生成31等。

4)抗阻訓練的作用:無論是單次或者長期的抗阻訓練都有明顯增加胰島素敏感性和增加糖耐量的作用32-35。長期抗阻訓練還能增強骨骼肌,從而提高整個機體的糖處理能力332型糖尿病患者嚴格遵從醫囑參與耐力訓練的比例相當低32。因此,有學者認為耐力訓練和抗阻訓練都是2型糖尿病患者改善代謝能力和提高生活質量的運動措施36

4、肥胖癥

1)老人:Villareal等人證明6個月每周3次的運動訓練不但使身體虛弱的老年人體重減輕8.4%,也使身體機能指數、VO2max以及功能狀態問卷得分有明顯改善。此外,治療組肌力、行走速度、障礙通過能力、單腿支撐時間等也都有顯著增加40

2)兒童:運動治療未改變肥胖患兒身體組分,但確實改善糖代謝能力。每周3次,每次1小時的運動訓練可以在8周以后使肥胖患兒的胰島素敏感性增高、心肺功能增強41

3)運動消耗和飲食攝入:Catenacci在綜述42中認為,大部分關于減肥的隨機對照研究顯示運動訓練本身可以獲得一定的效果,但是減肥絕對值較小(約0.1~5.2kg)。部分研究提示如果每天能量攝入少于消耗500~700kCal,可以在短期內使體重下降6~8kg43, 44

二、骨關節疾病

1、運動損傷

1)跳躍膝: 運動員的常見損傷,53%的患者為此終止運動生涯45。伸膝肌群離心性運動訓練可以減輕膝關節疼痛、改善運動功能46, 47,且常以下蹲作為基本訓練動作。但是下蹲運動時髕韌帶負荷受到軀干角度、側向重心偏移和小腿肌肉韌帶張力等因素的影響,因此提出了在25度的斜板上站立進行股四頭肌離心收縮訓練的方案48, 49,訓練時要求患者盡可能保持軀干直立站立于25度的斜板上,墊高足后部以放松小腿肌肉,進而緩慢屈膝至70°;并且在訓練中增加負重量使患者在離心收縮時產生能夠忍受的疼痛。結果證明15次×3組,每天2次,每周7天,共12周的離心收縮訓練,使124832個月49時患者的膝關節疼痛和功能改善效果均比向心性收縮訓練組明顯。

2)踝關節損傷:近年來系列研究提出諸多損傷機制來解釋功能性不穩定,如肌肉力量、關節本體感覺、姿勢控制、神經傳導速度以及神經肌肉反應時間,根據這些可能機制提出的運動方案主要強調本體感覺50、力量增強訓練51以及協調性訓練52等。踝關節功能性不穩定者步行擺動相末期和足跟觸地時踝關節可處于明顯的內翻狀態53,內翻扭力可使踝關節外側韌帶和關節囊等組織損傷,使本體感覺減退,進而使中樞神經系統對踝關節的控制減弱和導致反復損傷。踝關節外側韌帶扭傷后早期在踝關節保護(使用彈性繃帶、活動性支具等)基礎上進行運動治療與靜態踝支具方案相比,運動治療使更多患者回歸工作和運動54。運動治療可使踝關節扭傷復發率降低(RR: 0.37),增加踝背屈的能力55

2、骨關節炎

1)治療作用:骨關節炎是最常見的疾病之一,髖和膝骨性關節炎者超過70%見于65歲以上老年人 56Thomas等對786位膝骨關節炎患者進行兩年隨訪研究,分為運動組、定期電話咨詢、運動+電話咨詢以及對照組,每6個月評估一次。參加運動治療的患者在所有4次評估時疼痛程度都輕于不運動者5725060歲以上的膝骨關節炎患者,18個月以后有氧運動和力量訓練組均比對照組具有更好的日常生活活動能力58Mangani等的研究也顯示力量訓練和有氧運動訓練有類似效果59221位患者進行股四頭肌肌力訓練或者關節活動度訓練,隨訪30個月表明,肌力訓練比關節活動度訓練能更好地維持肌力和延緩關節病變的進展60

2)作用機制: Foley等利用MRI測量膝關節軟骨的體積、脛骨平臺面積以及軟骨缺損計分,并進行了2年隨訪,發現關節軟骨體積、脛骨平臺面積的年度變化率與下肢肌力基礎值呈正相關;與下肢肌力增加呈負相關,體力活動能力與關節軟骨體積變化正相關61

3、骨質疏松

1)治療作用:Bonaiuti的薈萃分析綜合18個隨機對照研究共1423位絕經后婦女,結果表明無論是否存在骨質疏松,有氧運動和力量訓練都能提高骨密度。中等強度的步行訓練能同時增加脊柱和髖關節的骨密度62。有研究認為有氧運動和力量訓練對防治絕經前或絕經后婦女脊柱的骨質疏松都有積極的作用63309位類風濕性關節炎患者進行每周兩次75分鐘的高強度運動治療,每6個月評價骨密度變化,結果顯示高強度訓練可有效地阻止骨量丟失64。但另一項研究發現力量訓練本身對類風濕關節炎患者的骨密度無明顯效果65。(2)癱瘓的影響:偏癱側上下肢的骨量丟失在第一年分別可達到10%20%66。因此有學者建議在腦卒中綜合康復治療方案中,應該將增加骨密度、減少骨量丟失作為重要內容之一;脊髓損傷患者也有明顯骨量丟失和骨折發病率增加67。截癱患者的骨盆和下肢,四肢癱患者的骨盆、下肢以及上肢都是容易發生骨質疏松的常見部位。一定強度的運動可能可以保持上肢的骨質密度,而對下肢的作用效果相對較差68。但是運動治療的效果不盡一致。如同樣采用功能性電刺激誘導的踏車運動,有報道認為對提高骨質密度無效69, 70;而Mohr等發現一年訓練后,脛骨近端的骨質密度增高10%71。對20SCI患兒的研究顯示,低負荷、高頻率機械刺激6個月使脛骨近端骨密度增加17.7%,而對照組下降11.9%72

4、脊柱疾病

每天15分鐘、每周3次的運動治療結合每天上床前15分鐘的腰部冷療,可以使椎間盤源性腰痛患者在12個月隨訪期內服用止痛藥物減少,70% 受試者疼痛程度減輕50%12個月的復發率也明顯降低73。單純運動治療或結合行為指導等可以在6周內緩解亞急性腰痛患者的疼痛癥狀,改善運動功能74-75

5、關節手術后

美國國立衛生研究院2003年發表的關于膝關節置換術的專家共識認為,膝關節置換術后的康復治療是研究最不充分卻被廣泛使用的措施76。膝關節置換術的最主要目的是消除由于骨性關節炎等原因導致的疼痛并改善關節功能。手術確實可緩解關節疼痛,但是術后患者仍然殘留功能障礙如關節攣縮77、肌力減退78-80、步態和活動異常81-83等。康復治療包括早期踝泵練習、等長收縮練習、力量訓練、關節活動度訓練等,康復治療結果與理想目標仍有較大距離。骨關節炎常會破壞關節周圍組織從而引起本體感覺異常84而手術對于膝關節本體感覺功能的影響尚無統一意見84-87

6、骨折后

1)早期康復:橈骨遠端移位骨折切開復位分段內固定術后第一周開始被動和主動關節活動度訓練,11個月隨訪,關節活動范圍、上肢的整體活動能力以及工作能力均顯著改善88。肱骨近段骨折固定術后立即開始運動治療與制動三周以后開始運動治療相比,術后1年時兩組患者患側肩關節功能障礙的比例分別是42.8%72.5%2年時功能障礙比例分別為43.2%59.5%。作者認為早期運動治療可以加速功能的恢復,尤其在術后一年內功能改善更加明顯;而術后前3周的制動治療使患者在術后兩年內的功能恢復進展緩慢89。股骨囊內骨折經患肢站立和行走訓練為主的早期運動治療有效,如FIM評分、疼痛分級和髖關節評分;接受積極治療的13位患者中有12位能獨立行走,而對照組無一例患者恢復行走功能90

2)運動方式:漸進性抗阻訓練可以增強髖關節骨折老年人的肌力和下肢峰值力矩,下肢肌力改善與訓練的強度具有高度相關性9116周社區內運動訓練程序有助于改善髖關節骨折老人的功能性移動能力、平衡能力、下肢力量和日常生活活動能力90。運動再學習理論指導的運動治療和常規運動治療及行為宣教的研究提示,骨折后624周兩組患者的Impairment如握力、腕關節活動范圍及疼痛程度等和活動限制、參與受限沒有明顯差別,常規情況下,患者接受一次的治療咨詢和指導已經足夠92

3)訓練安全性:Mangione等進行的初步研究表明髖關節骨折老年患者可以在家庭內完成治療師個別治療下的中、高強度運動訓練。漸進性抗阻訓練和有氧訓練都顯著延長步行距離,提高肌力、行走速度和整體運動功能而未發現明顯的不良反應93

三、神經系統疾病

1、腦卒中

1)力量訓練:大量研究表明力量訓練可以增強腦卒中患者的肌力(增加7~150%),但是尚未證明力量訓練對患者功能性活動和日常生活活動能力的作用94-96

2)強化訓練:Allison97研究強化訓練組與傳統治療組14-28天訓練的結果,證明出院12周后強化組Berg平衡指數以及軀干控制能力提高幅度較大。但是強化組10位患者中有3人在治療第一周時就由于疲勞退出治療。強化功能性電刺激輔助運動訓練(1小時/天,連續15~20天)與常規強度(15分鐘感覺強度電刺激/天,4/周)相比,可以使腦卒中發病3個月內的患者上肢功能的Wolf運動功能試驗指數顯著提高98

3)上肢功能:有報道6周主動運動加神經肌肉電刺激雖然未能提高Fugl-Meyer評分,但行為活動和運動活動都有明顯改善并維持了6個月99。機器人輔助訓練改變了過去替代運動的思路,致力于通過患者控制的主動運動觸發,通過神經功能重塑的機制最終恢復患者的主動活動能力,表現了新的活力100, 101。此外,針灸對上肢功能的改善得到越來越多的重視,如電針結合力量訓練可以減輕慢性腦卒中患者腕關節的痙攣程度102,針灸治療結合常規運動治療可以減輕肩關節半脫位患者的關節活動度和力量103

2、腦外傷

1)牽伸訓練:常常用于控制過高的肌肉張力、減輕攣縮。但是治療時可能由于操作不當而出現意外,例如腘繩肌完全斷裂等104。上肢肌肉痙攣可導致肌肉攣縮,單純牽伸治療并不能避免攣縮105

2)強制性運動療法(CIMT):一般認為腦外傷的效果不及腦卒中患者。主要原因是由于腦外傷患者比腦卒中患者更容易出現認知障礙,例如記憶力減退、知覺障礙、注意力障礙、思維緩慢、執行能力減退和行為及控制障礙等。Morris證明這些認知和行為改變使腦外傷患者對CIMT的依從性大大下降,最后影響治療效果106

3)減重訓練:目前尚未取得統一結論,可能和損傷部位、嚴重程度、減重訓練方案等因素有關。38位腦外傷患者分別接受減重訓練或者常規康復治療,8周后兩組患者的功能性步行分類 (FAC) 平衡能力、Rivermead運動指數和FIM評分都比治療前有顯著提高,但是兩組之間并無明顯差別107。腦外傷6年以上的20位患者分別進行3個月的減重步行訓練和常規步態訓練,結果治療后兩組FAC、起立和行走測試都有改善,但兩組間無明顯差別。常規訓練組患者的步態對稱性反而好于減重訓練組108

3、脊髓損傷

1)部分減重步行訓練:近年來部分減重步行訓練在脊髓損傷患者中廣泛使用,但是由于實驗設計存在歷史對照、評估偏倚等缺陷使得研究結果的可靠程度不高。因此,Dobkin109人的多中心單盲隨機對照研究 (CLILT),納入發病時間平均為4.5周的145位脊髓損傷患者(其中AISA B38例,ASIA CD137例),比較減重訓練和常規訓練的差異。減重訓練組在12周內接受45次步行訓練,每兩周評估FIM-步行評分、15.2步行速度、下肢運動評分 (Lower Extremity Motor Score, LEMS) 12周治療結束時測定6分鐘步行距離。兩種訓練都明顯改善患者步行功能,但沒有組間差異。發病后4周內開始接受治療者效果優于4周后開始接受治療者;兩種治療方法都在約6周以后表現出明顯的進步。該結果與該作者報告的6個月隨訪結果一致110

2)運動功能評定:根據統計111,約75~85%發病后數天內評為ASIA A級的患者在一年以后仍為A級;發病72小時評為B級的患者一年以后僅有20%患者仍為B級;75%C級患者可以進步到D級。因此,ASIA功能分級在脊髓損傷急性期的使用可能不夠敏感;更重要的是不能反映行走能力等功能性改變。下肢運動評分 (Lower Extremity Motor Score, LEMS) 是根據雙下肢主要肌群的肌力分級進行評估(每側各25分,總分50分)。根據既往研究結果,脊髓損傷后上下肢運動功能的改善主要在發病后8~26112,而且對于不完全性損傷患者來說,發病后一個月時LEMS>20分是6個月時具有獨立步行能力的重要預測指標。因此,在脊髓損傷康復治療的早期,LEMS可能作為一個重要評估指標。

3)訓練基礎: Adams觀察一位ASIA BSCI患者接受每周3次,共4個月的行走訓練,平板步行速度從治療前1.0 km/h增加到2.5 km/h,步行距離從500增加到1875;股外側肌的肌纖維橫斷面積增加了27.1%I型纖維百分比從1.3%增加到24.6% 113T8外傷性脊髓損傷SD大鼠模型在發病一周后接受連續5天(20分鐘/次,2/天)的活動平板訓練后,與對照組相比,運動組大鼠整體運動功能提高32%,比目魚肌最大強直收縮肌力增加了38%、肌肉疲勞下降9%,橫斷面積增加了23%;此外還發現,無論治療與否,整體運動功能與比目魚肌最大強制收縮力具有高度相關性(0.74114

4)神經再生的分子生物學基礎:已經知道腦源性神經營養因子(Brain-derived neurotrophic factor, BDNF)是神經可塑性的重要物質基礎;BDNF調控突觸蛋白ISynapsin I)的合成和磷酸化過程進而引起神經遞質的釋放;神經營養因子3Neurotrophin-3, NT-3)是在突觸傳遞和脊髓再生以及保持感覺神經元功能完整性中起到重要作用。運動訓練可以提高脊髓功能正常者的BDNFNT-3的濃度。動物實驗也證明運動訓練能促進脊髓損傷后神經營養因子和突觸可塑性的提高。Ying115等人將中段胸髓半切損傷大鼠分為不運動組和運動組(跑籠)并與正常大鼠比較運動3天、7天和28天時的BDNF、突觸蛋白I以及NT-3mRNA、蛋白濃度。結果發現,脊髓半切降低BDNF和突觸蛋白ImRNA和蛋白表達,但對NT-3沒有影響;運動組BDNF和突觸蛋白ImRNA和蛋白表達水平明顯提高,其中運動組28天的BDNF蛋白濃度比正常對照組高大約40%,運動組28天時NT-3mRNA水平也升高到正常對照的145%。該研究從分子生物學水平部分闡述了運動訓練對脊髓損傷后功能恢復的神經基礎。

4、外周神經損傷

1)外周神經損傷制動的利弊:外周神經損傷術后常規采用手指夾板固定,防止手指的伸展運動以避免修復后神經產生再次損傷。但是Clare比較了手指夾板使用對手指僵硬度、恢復工作時間等的影響,結果發現不使用夾板者恢復工作需要的時間較短,自我感覺關節僵硬較輕116。因此作者建議沒有嚴重并發癥的神經切割傷術后的康復治療不要使用夾板。

2)格林-巴利綜合征:兒童罹患該病兩年以后用Wingate無氧測試評估上下肢平均肌力和峰值肌力,結果顯示平均臂力是正常值的47.5%,而平均腿力為正常值的83%;峰值臂力和腿力分別為正常值的92.6%116.3%。因此在格林-巴利綜合征患兒的治療應更加關注上肢肌力的恢復11742位平均年齡52歲的患者在發病2周、2月、6月、1年和 2年時評定肌力、握力、手指靈活度、平衡能力、面肌功能、呼吸功能、步態、運動和感覺功能、以及患者對疼痛、疲勞和感覺異常的自我評估。感覺和運動功能主要在第一年內恢復,但是到第二年末,仍然有超過一半的患者遺留有明顯的運動和感覺功能障礙118。發病一年后僅有33%的患者自我評估為完全恢復,此外對日常生活和社會活動的自我感覺評估也有明顯的障礙,如32%患者因為該病而改換工作、30%患者不能像發病前一樣完成家庭內工作以及52%患者不得不根據身體狀況改變業余活動的內容119。因此康復治療應該個體化并且長期堅持。

5、腦癱

1)異常行為模式:腦癱是由發生于胎兒期或嬰兒期的非進展性腦損害引起的一系列運動、姿勢發育異常,最終導致運動受限120Taub等人在2004年提出了發育性忽略(Developmental Disregard)的概念,描述腦癱患兒在運動功能發育過程中對患側肢體的忽略和避免使用的情況121Eliasson2003年提出腦癱患兒的患肢從無正常運動功能的經驗和體驗122,因此,患肢訓練應該著重為使用患側肢體創造條件、機會和環境,并從行為上糾正患兒的運動模式121, 122

2)強制性運動療法 (Constraint-induced movement therapy, CIMT) :在成年患者腦血管意外、腦外傷以及手部局灶性張力異常的使用中已經取得相當多的經驗,目的是從行為上修正忽略和避免使用患側肢體的錯誤模式。因此,CIMT理論上也可以用于偏癱型腦癱患兒的治療。Deluca報道了對18例患兒進行的隨機對照交叉研究表明,為期三周的CIMT可以使平均年齡41.5月的患兒顯著改善患側上肢的功能,并且在治療結束后3周重復評估無明顯減退123Eliasson比較了CIMT治療和傳統康復治療的效果,發現2個月每天2小時的CIMT顯著改善了患側肢體輔助手評分,并且治療結束后4個月的再次評估仍然保留了良好的治療效果124。改良的適合兒童特點的CIMT也取得了類似的效果125, 126。此外CIMT用于小兒腦血管意外的治療也見于少量報道。2小時/天、5/周的改良CIMT訓練殘留有肢體癱瘓和手功能障礙的缺血性腦血管意外患兒4周后,雖然患肢的感覺運動功能沒有明顯的改善,但是患兒的功能性活動卻有明顯改善127

6、小兒麻痹后遺癥

兒麻患者的行走速度與同年齡對照組相比減慢28%,而能量消耗增加了40%;并且能量消耗和下肢肌力總和呈負相關(r= -0.84128Hebert129用交叉設計比較膝關節鎖定KAFO和支撐相自動鎖止KAFO的三維步態分析,發現站立相自動鎖止KAFO時患肢擺動相的運動接近正常并減少了骨盆回撤和旋轉幅度,降低能耗,提高效率。

四、運動訓練方法

1、強制性運動療法

一項隨機對照單盲研究比較了每天3小時、持續兩周的CIMT與強化傳統治療對腦卒中早期(發病2周之內)上肢功能恢復的影響,結果發現除了治療結束時CIMT組患者Fugl-Meyer得分和治療結束3個月時患肢自我評價顯著高于傳統治療組外,雖然CIMT組患者各評價指標得分均高于傳統治療組,但尚未發現存在明顯差別130。另外一項隨機對照研究比較了3周改良的CIMT和常規治療對腦卒中患者上肢功能的影響,結果所用的評價指標包括Fugl-MeyerFIM、運動活動日志 (MAL) 和卒中影響量表 (Stroke Impact Scale, SIS)都提示CIMT組患者進步比常規治療組明顯131

2、意念性運動療法

1)理論基礎:運動想象或意念性運動(Movement Imagery or Motor Imagery, MI)是指通過大腦有意識地模擬、訓練某一動作而不伴有明顯的身體或肢體活動132, 133。此概念早在20世紀80年代晚期及90年代早期就已被提出,近年來隨著神經影像學技術如功能性磁共振的顯像等的發展,越來越多的研究結果進一步證明了運動想象在改善和恢復運動能力、學習運動技術134-136等方面的作用并部分闡明了該技術的神經基礎137-139。運動想象的神經基礎主要是大腦可塑性。成年人的皮層代表區不是一成不變的,能根據不同的外周及中樞的神經刺激而發生重新組合;正是大腦可塑性的存在才使得正常的學習和神經損傷以后的功能恢復成為可能。毫無疑問,長時間的廢用可以使相應的大腦皮層代表區變小,Zanette等發現相對短時間的廢用也可以引起大腦皮層同樣的改變140Fiori等人也發現書寫痙攣(局灶性痙攣)患者完成意念性轉動手部存在困難,并且大腦皮層代表區也會相應變化141

2)臨床作用:運動想象也有助于提高正常人的運動能力,比如可以選擇性增強肌群的力量142, 143、提高上肢定向運動的速度和準確性144、結合PNF使用可以增加髖關節的活動范圍145以及改善老年人的姿勢控制能力146。因為運動想象有助于改善和提高很多與職業相關的運動技能,因此,上世紀90年代就有學者將運動想象用于護士和外科醫生操作技術的培養和訓練147

3)臨床應用:運動想象在康復醫學中主要用于各種神經損傷性疾病,如腦血管意外135, 148、脊髓損傷139, 149, 150等。如對于中風患者來說,眾多研究均認為結合運動想象和常規運動療法的綜合治療效果優于常規運動治療,并顯著高于無運動治療者151。無論是在腦血管意外后肢體癱瘓的急性期或長期肢體功能障礙者、無論患者癱瘓的嚴重程度148, 152, 153,運動想象治療都有助于改善肢體功能154、坐-站轉移151、日常生活活動能力135, 155以及改善單側空間忽略癥狀156。對于脊髓損傷患者來說,尚無新證據直接證明運動想象能改善癱瘓肌肉的功能,但是運動想象也能引起大腦運動皮層的功能重組再次得到證明139, 150Muller-Putz等人已經成功利用腦電圖采集運動想象誘導的大腦運動信號,通過計算機處理后誘發四肢癱患者的手或者神經假肢的運動157, 158。運動想象在帕金森病患者中的應用僅見少量報道,并且尚未取得一致結論。有學者認為由于基底節缺乏多巴胺這個病理基礎的存在,使帕金森病患者難以完成運動想象的訓練而不能產生相應的訓練效應159。但新近完成的一項研究證明,在使用多巴胺能藥物以后的響應期內進行運動想象訓練,確實能夠比單純進行傳統運動治療更能改善由于運動遲緩導致的日常活動能力160。復合性區域性疼痛綜合征 (Complex Regional Pain Syndrome, CPRS) 的治療也是康復醫學的難題之一。Moseley等在完成三個系列研究的基礎上提出了分級運動想象訓練法 (graded motor imagery) 用于CPRS患者可以顯著緩解疼痛等癥狀,取得良好的效果161-163。分級運動想象包括3個連續的階段。第一階段:學習、認識、記憶肢體在不同肢體位置下的印象;第二階段:在不誘發疼痛的前提下盡可能舒緩的完成不同肢體位置的意念性運動;第三階段:將患側肢體置于不透明的盒子內,雙側肢體完成同樣的動作。Moseley等人的研究證明,在6個月的隨訪期間,分級運動想象訓練有效地緩解了疼痛并改善患側肢體的功能。

3、康復機器人與運動訓練

1)上肢訓練:機器人用于康復治療可以提供高強度、各種重復性任務性活動,并提供交互性功能;此外,還能用于客觀、可靠的評價患者的恢復和進步情況164。目前使用于上肢訓練的機器人可以提供單側或雙側肩關節、肘關節2~3個自由度的活動165-167,最新發展的機器人系統(Mechatronic System for Motor Recovery)還能用于腕關節訓練168。研究已經證明這些機器人系統輔助訓練可以顯著提高慢性期腦卒中患者的肢體,包括肩、肘和腕關節的功能165-168。小型化的康復機器人可以制作成類似于能產生動力的矯形器形狀(外骨骼),從而起到輔助和引導癱瘓肌肉產生運動的作用并通過產生的肌電信號作為反饋信號控制該動力矯形器的運動。有研究證明即使腦卒中后嚴重偏癱患者也能順利控制其運動并產生良好的訓練效果101

2)下肢訓練:有研究證明在傳統康復治療的基礎上加用機器人輔助行走訓練矯形器(Robot-driven gait orthosis, Lokomat)進行每天30分鐘的行走訓練共4周以后,兩組患者行走功能的改善程度無明顯差別,但是治療組患者行走時患側支撐時間明顯延長,增加了行走時雙下肢的對稱性169。康復機器人訓練與治療時輔助行走訓練對患者的能量消耗和下肢肌肉活動產生不同影響。由于康復機器人可能對患肢提供較強的、被動的穩定作用和活動時的引導作用,可以減少患者本身能量消耗和肌肉活動170。雖然康復機器人的強大穩定性支持作用減少了肌肉主動活動,但是其對于正確運動模式的引導作用可能在神經損傷后早期活動訓練中起到重要作用171

4、太極拳在康復醫學中的應用

1)增強肌力:從運動特點來說,太極拳是一種結合了下肢開鏈和閉鏈運動的綜合性運動。閉鏈運動由于有助于控制髕骨的向前移位而被認為是一種增強膝關節周圍肌群力量的有效方法之一。有研究證明膝骨關節炎的患者采用計算機輔助的本體感覺易化運動 (Computerized proprioception facilitation exercise, CPFE) 和閉鏈運動 (Closed kinetic chain exercise, CKCE)都有助于提高關節位置覺、綜合功能評估得分、行走速度和肌力;但是CKCE增強伸膝肌群力量的作用更加明顯172

2)改善運動控制:太極拳能夠加強下肢肌肉協同并改善運動控制173Christou等觀察以伸膝肌群最大等長收縮力量的2%30%60%90%進行維持3秒的等長收縮時等長收縮力量的標準差和變異系數,比較患者在接受20周太極拳訓練后的運動控制,表明太極拳組的標準差和變異系數比對照組分別下降12.2%18.9%

3)促進本體覺:長期的太極拳運動也有助于提高膝關節的本體感覺功能。有10年太極拳鍛煉者膝關節角度偏移值是2.1±1.2°,低于同齡對照組(4.0±3.4°174。該作者另一項研究提示太極拳鍛煉的中老年人的膝關節本體感覺與正常年輕人無明顯差異(1.7±1.3°1.1±0.5°175

參考文獻:

1.    Adams JL, Nuss T, Banks C, Hartman J, Segrest W, Spears J et al. Risk factor outcome comparison between exercise-based cardiac rehabilitation, traditional care, and an educational workshop. Journal of continuing education in nursing 2007;38(2):83-8.

2.    Balady GJ, Williams MA, Ades PA, Bittner V, Comoss P, Foody JM et al. Core components of cardiac rehabilitation/secondary prevention programs: 2007 update: a scientific statement from the American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee, the Council on Clinical Cardiology; the Councils on Cardiovascular Nursing, Epidemiology and Prevention, and Nutrition, Physical Activity, and Metabolism; and the American Association of Cardiovascular and Pulmonary Rehabilitation. Circulation 2007;115(20):2675-82.

3.    Gademan MG, Swenne CA, Verwey HF, van der Laarse A, Maan AC, van de Vooren H et al. Effect of exercise training on autonomic derangement and neurohumoral activation in chronic heart failure. Journal of cardiac failure 2007;13(4):294-303.

4.    Laterza MC, de Matos LD, Trombetta IC, Braga AM, Roveda F, Alves MJ et al. Exercise training restores baroreflex sensitivity in never-treated hypertensive patients. Hypertension 2007;49(6):1298-306.

5.    Gao L, Wang W, Liu D, Zucker IH. Exercise training normalizes sympathetic outflow by central antioxidant mechanisms in rabbits with pacing-induced chronic heart failure. Circulation 2007;115(24):3095-102.

6.    Akita Y, Otani H, Matsuhisa S, Kyoi S, Enoki C, Hattori R et al. Exercise-induced activation of cardiac sympathetic nerve triggers cardioprotection via redox-sensitive activation of eNOS and upregulation of iNOS. American journal of physiology 2007;292(5):H2051-9.

7.    Williams AD, Carey MF, Selig S, Hayes A, Krum H, Patterson J et al. Circuit resistance training in chronic heart failure improves skeletal muscle mitochondrial ATP production rate--a randomized controlled trial. Journal of cardiac failure 2007;13(2):79-85.

8.    Andreozzi GM, Leone A, Laudani R, Deinite G, Martini R. Acute impairment of the endothelial function by maximal treadmill exercise in patients with intermittent claudication, and its improvement after supervised physical training. Int Angiol 2007;26(1):12-7.

9.    Badger SA, Soong CV, ODonnell ME, Boreham CA, McGuigan KE. Benefits of a supervised exercise program after lower limb bypass surgery. Vascular and endovascular surgery 2007;41(1):27-32.

10.  Skinner JS, Cooper A, Feder GS. Secondary prevention for patients following a myocardial infarction: summary of NICE guidance. Heart (British Cardiac Society) 2007;93(7):862-4.

11.  Hackam DG, Spence JD. Combining multiple approaches for the secondary prevention of vascular events after stroke: a quantitative modeling study. Stroke; a journal of cerebral circulation 2007;38(6):1881-5.

12.  Hannukainen JC, Janatuinen T, Toikka JO, Jarvisalo MJ, Heinonen OJ, Kapanen J et al. Myocardial and peripheral vascular functional adaptation to exercise training. Scandinavian journal of medicine & science in sports 2007;17(2):139-47.

13.  Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 2007;115(24):3086-94.

14.  Bradley JM, ONeill B. Short term ambulatory oxygen for chronic obstructive pulmonary disease. Cochrane database of systematic reviews (Online) 2005(2):CD004356.

15.  Nonoyama ML, Brooks D, Lacasse Y, Guyatt GH, Goldstein RS. Oxygen therapy during exercise training in chronic obstructive pulmonary disease. Cochrane database of systematic reviews (Online) 2007(2):CD005372.

16.  Spencer LM, Alison JA, McKeough ZJ. Do supervised weekly exercise programs maintain functional exercise capacity and quality of life, twelve months after pulmonary rehabilitation in COPD? BMC pulmonary medicine 2007;7:7.

17.  Skumlien S, Skogedal EA, Bjortuft O, Ryg MS. Four weeks intensive rehabilitation generates significant health effects in COPD patients. Chronic respiratory disease 2007;4(1):5-13.

18.  Puhan MA, Busching G, Schunemann HJ, VanOort E, Zaugg C, Frey M. Interval versus continuous high-intensity exercise in chronic obstructive pulmonary disease: a randomized trial. Annals of internal medicine 2006;145(11):816-25.

19.  ONeill B, McKevitt A, Rafferty S, Bradley JM, Johnston D, Bradbury I et al. A comparison of twice- versus once-weekly supervision during pulmonary rehabilitation in chronic obstructive pulmonary disease. Archives of physical medicine and rehabilitation 2007;88(2):167-72.

20.  Cockram J, Cecins N, Jenkins S. Maintaining exercise capacity and quality of life following pulmonary rehabilitation. Respirology (Carlton, Vic 2006;11(1):98-104.

21.  Association AD. Standards of medical care in diabetes--2007. Diabetes Care 2007;30 Suppl 1:S4-S41.

22.  Nathan DM, Buse JB, Davidson MB, Heine RJ, Holman RR, Sherwin R et al. Management of hyperglycaemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy. A consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 2006;49(8):1711-21.

23.  Sigal RJ, Kenny GP, Wasserman DH, Castaneda-Sceppa C, White RD. Physical activity/exercise and type 2 diabetes: a consensus statement from the American Diabetes Association. Diabetes Care 2006;29(6):1433-8.

24.  Garcia-Roves PM, Han DH, Song Z, Jones TE, Hucker KA, Holloszy JO. Prevention of glycogen supercompensation prolongs the increase in muscle GLUT4 after exercise. Am J Physiol Endocrinol Metab 2003;285(4):E729-36.

25.  Pencek RR, Fueger PT, Camacho RC, Wasserman DH. Mobilization of glucose from the liver during exercise and replenishment afterward. Canadian journal of applied physiology = Revue canadienne de physiologie appliquee 2005;30(3):292-303.

26.  Bisquolo VA, Cardoso CG, Jr., Ortega KC, Gusmao JL, Tinucci T, Negrao CE et al. Previous exercise attenuates muscle sympathetic activity and increases blood flow during acute euglycemic hyperinsulinemia. J Appl Physiol 2005;98(3):866-71.

27.  Ivey FM, Ryan AS, Hafer-Macko CE, Goldberg AP, Macko RF. Treadmill Aerobic Training Improves Glucose Tolerance and Indices of Insulin Sensitivity in Disabled Stroke Survivors. A Preliminary Report. Stroke; a journal of cerebral circulation 2007.

28.  Bruce CR, Hawley JA. Improvements in insulin resistance with aerobic exercise training: a lipocentric approach. Medicine and science in sports and exercise 2004;36(7):1196-201.

29.  Teixeira de Lemos E, Reis F, Baptista S, Pinto R, Sepodes B, Vala H et al. Exercise training is associated with improved levels of C-reactive protein and adiponectin in ZDF (type 2) diabetic rats. Med Sci Monit 2007;13(8):BR168-74.

30.  Maiorana A, ODriscoll G, Taylor R, Green D. Exercise and the nitric oxide vasodilator system. Sports medicine (Auckland, NZ 2003;33(14):1013-35.

31.  Segal KR, Edano A, Abalos A, Albu J, Blando L, Tomas MB et al. Effect of exercise training on insulin sensitivity and glucose metabolism in lean, obese, and diabetic men. J Appl Physiol 1991;71(6):2402-11.

32.  Dunstan DW, Daly RM, Owen N, Jolley D, De Courten M, Shaw J et al. High-intensity resistance training improves glycemic control in older patients with type 2 diabetes. Diabetes Care 2002;25(10):1729-36.

33.  Fenicchia LM, Kanaley JA, Azevedo JL, Jr., Miller CS, Weinstock RS, Carhart RL et al. Influence of resistance exercise training on glucose control in women with type 2 diabetes. Metabolism: clinical and experimental 2004;53(3):284-9.

34.  Praet SF, Manders RJ, Lieverse AG, Kuipers H, Stehouwer CD, Keizer HA et al. Influence of acute exercise on hyperglycemia in insulin-treated type 2 diabetes. Medicine and science in sports and exercise 2006;38(12):2037-44.

35.  Holten MK, Zacho M, Gaster M, Juel C, Wojtaszewski JF, Dela F. Strength training increases insulin-mediated glucose uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes. Diabetes 2004;53(2):294-305.

36.  Snowling NJ, Hopkins WG. Effects of different modes of exercise training on glucose control and risk factors for complications in type 2 diabetic patients: a meta-analysis. Diabetes Care 2006;29(11):2518-27.

37.  Houmard JA, Tanner CJ, Slentz CA, Duscha BD, McCartney JS, Kraus WE. Effect of the volume and intensity of exercise training on insulin sensitivity. J Appl Physiol 2004;96(1):101-6.

38.  ODonovan G, Kearney EM, Nevill AM, Woolf-May K, Bird SR. The effects of 24 weeks of moderate- or high-intensity exercise on insulin resistance. European journal of applied physiology 2005;95(5-6):522-8.

39.  Jakicic JM, Marcus BH, Gallagher KI, Napolitano M, Lang W. Effect of exercise duration and intensity on weight loss in overweight, sedentary women: a randomized trial. Jama 2003;290(10):1323-30.

40.  Villareal DT, Banks M, Sinacore DR, Siener C, Klein S. Effect of weight loss and exercise on frailty in obese older adults. Archives of internal medicine 2006;166(8):860-6.

41.  Bell LM, Watts K, Siafarikas A, Thompson A, Ratnam N, Bulsara M et al. Exercise alone reduces insulin resistance in obese children independently of changes in body composition. J Clin Endocrinol Metab 2007.

42.  Catenacci VA, Wyatt HR. The role of physical activity in producing and maintaining weight loss. Nature clinical practice 2007;3(7):518-29.

43.  Ross R, Dagnone D, Jones PJ, Smith H, Paddags A, Hudson R et al. Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men. A randomized, controlled trial. Annals of internal medicine 2000;133(2):92-103.

44.  Ross R, Janssen I, Dawson J, Kungl AM, Kuk JL, Wong SL et al. Exercise-induced reduction in obesity and insulin resistance in women: a randomized controlled trial. Obesity research 2004;12(5):789-98.

45.  Kettunen JA, Kvist M, Alanen E, Kujala UM. Long-term prognosis for jumpers knee in male athletes. A prospective follow-up study. The American journal of sports medicine 2002;30(5):689-92.

46.  Wilson JJ, Best TM. Common overuse tendon problems: A review and recommendations for treatment. American family physician 2005;72(5):811-8.

47.  Peers KH, Lysens RJ. Patellar tendinopathy in athletes: current diagnostic and therapeutic recommendations. Sports medicine (Auckland, NZ 2005;35(1):71-87.

48.  Purdam CR, Jonsson P, Alfredson H, Lorentzon R, Cook JL, Khan KM. A pilot study of the eccentric decline squat in the management of painful chronic patellar tendinopathy. British journal of sports medicine 2004;38(4):395-7.

49.  Jonsson P, Alfredson H. Superior results with eccentric compared to concentric quadriceps training in patients with jumpers knee: a prospective randomised study. British journal of sports medicine 2005;39(11):847-50.

50.  Eils E, Rosenbaum D. A multi-station proprioceptive exercise program in patients with ankle instability. Medicine and science in sports and exercise 2001;33(12):1991-8.

51.  Osborne MD, Chou LS, Laskowski ER, Smith J, Kaufman KR. The effect of ankle disk training on muscle reaction time in subjects with a history of ankle sprain. The American journal of sports medicine 2001;29(5):627-32.

52.  Ross SE, Guskiewicz KM. Effect of coordination training with and without stochastic resonance stimulation on dynamic postural stability of subjects with functional ankle instability and subjects with stable ankles. Clin J Sport Med 2006;16(4):323-8.

53.  Monaghan K, Delahunt E, Caulfield B. Ankle function during gait in patients with chronic ankle instability compared to controls. Clinical biomechanics (Bristol, Avon) 2006;21(2):168-74.

54.  Kerkhoffs GM, Rowe BH, Assendelft WJ, Kelly K, Struijs PA, van Dijk CN. Immobilisation and functional treatment for acute lateral ankle ligament injuries in adults. Cochrane database of systematic reviews (Online) 2002(3):CD003762.

55.  van der Wees PJ, Lenssen AF, Hendriks EJ, Stomp DJ, Dekker J, de Bie RA. Effectiveness of exercise therapy and manual mobilisation in ankle sprain and functional instability: a systematic review. The Australian journal of physiotherapy 2006;52(1):27-37.

56.  Veje K, Hyllested JL, Ostergaard K. [Osteoarthritis. Pathogenesis, clinical features and treatment]. Ugeskrift for laeger 2002;164(24):3173-9.

57.  Thomas KS, Muir KR, Doherty M, Jones AC, OReilly SC, Bassey EJ. Home based exercise programme for knee pain and knee osteoarthritis: randomised controlled trial. BMJ (Clinical research ed 2002;325(7367):752.

58.  Penninx BW, Messier SP, Rejeski WJ, Williamson JD, DiBari M, Cavazzini C et al. Physical exercise and the prevention of disability in activities of daily living in older persons with osteoarthritis. Archives of internal medicine 2001;161(19):2309-16.

59.  Mangani I, Cesari M, Kritchevsky SB, Maraldi C, Carter CS, Atkinson HH et al. Physical exercise and comorbidity. Results from the Fitness and Arthritis in Seniors Trial (FAST). Aging clinical and experimental research 2006;18(5):374-80.

60.  Mikesky AE, Mazzuca SA, Brandt KD, Perkins SM, Damush T, Lane KA. Effects of strength training on the incidence and progression of knee osteoarthritis. Arthritis and rheumatism 2006;55(5):690-9.

61.  Foley S, Ding C, Cicuttini F, Jones G. Physical activity and knee structural change: a longitudinal study using MRI. Medicine and science in sports and exercise 2007;39(3):426-34.

62.  Bonaiuti D, Shea B, Iovine R, Negrini S, Robinson V, Kemper HC et al. Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane database of systematic reviews (Online) 2002(3):CD000333.

63.  Wallace BA, Cumming RG. Systematic review of randomized trials of the effect of exercise on bone mass in pre- and postmenopausal women. Calcified tissue international 2000;67(1):10-8.

64.  de Jong Z, Munneke M, Lems WF, Zwinderman AH, Kroon HM, Pauwels EK et al. Slowing of bone loss in patients with rheumatoid arthritis by long-term high-intensity exercise: results of a randomized, controlled trial. Arthritis and rheumatism 2004;50(4):1066-76.

65.  Hakkinen A, Sokka T, Kotaniemi A, Hannonen P. A randomized two-year study of the effects of dynamic strength training on muscle strength, disease activity, functional capacity, and bone mineral density in early rheumatoid arthritis. Arthritis and rheumatism 2001;44(3):515-22.

66.  Beaupre GS, Lew HL. Bone-density changes after stroke. American journal of physical medicine & rehabilitation / Association of Academic Physiatrists 2006;85(5):464-72.

67.  Sabo D, Blaich S, Wenz W, Hohmann M, Loew M, Gerner HJ. Osteoporosis in patients with paralysis after spinal cord injury. A cross sectional study in 46 male patients with dual-energy X-ray absorptiometry. Archives of orthopaedic and trauma surgery 2001;121(1-2):75-8.

68.  Jones LM, Legge M, Goulding A. Intensive exercise may preserve bone mass of the upper limbs in spinal cord injured males but does not retard demineralisation of the lower body. Spinal Cord 2002;40(5):230-5.

69.  BeDell KK, Scremin AM, Perell KL, Kunkel CF. Effects of functional electrical stimulation-induced lower extremity cycling on bone density of spinal cord-injured patients. American journal of physical medicine & rehabilitation / Association of Academic Physiatrists 1996;75(1):29-34.

70.  Eser P, de Bruin ED, Telley I, Lechner HE, Knecht H, Stussi E. Effect of electrical stimulation-induced cycling on bone mineral density in spinal cord-injured patients. European journal of clinical investigation 2003;33(5):412-9.

71.  Mohr T, Podenphant J, Biering-Sorensen F, Galbo H, Thamsborg G, Kjaer M. Increased bone mineral density after prolonged electrically induced cycle training of paralyzed limbs in spinal cord injured man. Calcified tissue international 1997;61(1):22-5.

72.  Ward K, Alsop C, Caulton J, Rubin C, Adams J, Mughal Z. Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res 2004;19(3):360-9.

73.  Vad VB, Bhat AL, Tarabichi Y. The role of the Back Rx exercise program in diskogenic low back pain: a prospective randomized trial. Archives of physical medicine and rehabilitation 2007;88(5):577-82.

74. Pengel LH, Refshauge KM, Maher CG, Nicholas MK, Herbert RD, McNair P. Physiotherapist-directed exercise, advice, or both for subacute low back pain: a randomized trial. Annals of internal medicine 2007;146(11):787-96.

75.  van Tulder M, Malmivaara A, Hayden J, Koes B. Statistical significance versus clinical importance: trials on exercise therapy for chronic low back pain as example. Spine 2007;32(16):1785-90.

76.  NIH Consensus Statement on total knee replacement December 8-10, 2003. J Bone Joint Surg Am 2004;86-A(6):1328-35.

77.  Yercan HS, Sugun TS, Bussiere C, Ait Si Selmi T, Davies A, Neyret P. Stiffness after total knee arthroplasty: prevalence, management and outcomes. The Knee 2006;13(2):111-7.

78.  Rossi MD, Hasson S. Lower-Limb Force Production in Individuals After Unilateral Total Knee Arthroplasty. Archives of physical medicine and rehabilitation 2004;85(8):1279-84.

79.  Mizner RL, Stevens JE, Snyder-Mackler L. Voluntary activation and decreased force production of the quadriceps femoris muscle after total knee arthroplasty. Physical therapy 2003;83(4):359-65.

80.  Rossi MD, Brown LE, Whitehurst M. Knee extensor and flexor torque characteristics before and after unilateral total knee arthroplasty. American journal of physical medicine & rehabilitation / Association of Academic Physiatrists 2006;85(9):737-46.

81. Ishii Y, Terajima K, Koga Y, Takahashi HE, Bechtold JE, Gustilo RB. Gait analysis after total knee arthroplasty. Comparison of posterior cruciate retention and substitution. J Orthop Sci 1998;3(6):310-7.

82.  Mandeville D, Osternig LR, Chou LS. The effect of total knee replacement on dynamic support of the body during walking and stair ascent. Clinical biomechanics (Bristol, Avon) 2007.

83.  Saari T, Tranberg R, Zugner R, Uvehammer J, Karrholm J. Changed gait pattern in patients with total knee arthroplasty but minimal influence of tibial insert design: gait analysis during level walking in 39 TKR patients and 18 healthy controls. Acta Orthop 2005;76(2):253-60.

84.  Wada M, Kawahara H, Shimada S, Miyazaki T, Baba H. Joint proprioception before and after total knee arthroplasty. Clin Orthop Relat Res 2002(403):161-7.

85.  Attfield SF, Wilton TJ, Pratt DJ, Sambatakakis A. Soft-tissue balance and recovery of proprioception after total knee replacement. J Bone Joint Surg Br 1996;78(4):540-5.

86.  Swanik CB, Lephart SM, Rubash HE. Proprioception, kinesthesia, and balance after total knee arthroplasty with cruciate-retaining and posterior stabilized prostheses. J Bone Joint Surg Am 2004;86-A(2):328-34.

87.  Warren PJ, Olanlokun TK, Cobb AG, Bentley G. Proprioception after knee arthroplasty. The influence of prosthetic design. Clin Orthop Relat Res 1993(297):182-7.

88.  Gerostathopoulos N, Kalliakmanis A, Fandridis E, Georgoulis S. Trimed fixation system for displaced fractures of the distal radius. The Journal of trauma 2007;62(4):913-8.

89.  Hodgson SA, Mawson SJ, Saxton JM, Stanley D. Rehabilitation of two-part fractures of the neck of the humerus (two-year follow-up). Journal of shoulder and elbow surgery / American Shoulder and Elbow Surgeons  [et al 2007;16(2):143-5.

90.  Jones GR, Jakobi JM, Taylor AW, Petrella RJ, Vandervoort AA. Community exercise program for older adults recovering from hip fracture: a pilot study. Journal of aging and physical activity 2006;14(4):439-55.

91.  Host HH, Sinacore DR, Bohnert KL, Steger-May K, Brown M, Binder EF. Training-induced strength and functional adaptations after hip fracture. Physical therapy 2007;87(3):292-303.

92.  Maciel JS, Taylor NF, McIlveen C. A randomised clinical trial of activity-focussed physiotherapy on patients with distal radius fractures. Archives of orthopaedic and trauma surgery 2005;125(8):515-20.

93.  Mangione KK, Craik RL, Tomlinson SS, Palombaro KM. Can elderly patients who have had a hip fracture perform moderate- to high-intensity exercise at home? Physical therapy 2005;85(8):727-39.

94.  Morris SL, Dodd KJ, Morris ME. Outcomes of progressive resistance strength training following stroke: a systematic review. Clinical rehabilitation 2004;18(1):27-39.

95.  Bohannon RW. Muscle strength and muscle training after stroke. J Rehabil Med 2007;39(1):14-20.

96.  Patten C, Lexell J, Brown HE. Weakness and strength training in persons with poststroke hemiplegia: rationale, method, and efficacy. Journal of rehabilitation research and development 2004;41(3A):293-312.

97.  Allison R, Dennett R. Pilot randomized controlled trial to assess the impact of additional supported standing practice on functional ability post stroke. Clinical rehabilitation 2007;21(7):614-9.

98.  Kowalczewski J, Gritsenko V, Ashworth N, Ellaway P, Prochazka A. Upper-extremity functional electric stimulation-assisted exercises on a workstation in the subacute phase of stroke recovery. Archives of physical medicine and rehabilitation 2007;88(7):833-9.

99.  Hedman LD, Sullivan JE, Hilliard MJ, Brown DM. Neuromuscular electrical stimulation during task-oriented exercise improves arm function for an individual with proximal arm dysfunction after stroke. American journal of physical medicine & rehabilitation / Association of Academic Physiatrists 2007;86(7):592-6.

100.      Masiero S, Celia A, Rosati G, Armani M. Robotic-assisted rehabilitation of the upper limb after acute stroke. Archives of physical medicine and rehabilitation 2007;88(2):142-9.

101.       Stein J, Narendran K, McBean J, Krebs K, Hughes R. Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke. American journal of physical medicine & rehabilitation / Association of Academic Physiatrists 2007;86(4):255-61.

102.       Mukherjee M, McPeak LK, Redford JB, Sun C, Liu W. The effect of electro-acupuncture on spasticity of the wrist joint in chronic stroke survivors. Archives of physical medicine and rehabilitation 2007;88(2):159-66.

103.       Shin BC, Lim HJ, Lee MS. Effectiveness of combined acupuncture therapy and conventional treatment on shoulder range of motion and motor power in stroke patients with hemiplegic shoulder subluxation: a pilot study. The International journal of neuroscience 2007;117(4):519-23.

104.       Chua SG, Kong KH. Complete semimembranosus rupture following therapeutic stretching after a traumatic brain injury. Brain Inj 2006;20(6):669-72.

105.       Harvey L, de Jong I, Goehl G, Mardwedel S. Twelve weeks of nightly stretch does not reduce thumb web-space contractures in people with a neurological condition: a randomised controlled trial. The Australian journal of physiotherapy 2006;52(4):251-8.

106.       Morris DM, Shaw SE, Mark VW, Uswatte G, Barman J, Taub E. The influence of neuropsychological characteristics on the use of CI therapy with persons with traumatic brain injury. NeuroRehabilitation 2006;21(2):131-7.

107.       Wilson DJ, Powell M, Gorham JL, Childers MK. Ambulation training with and without partial weightbearing after traumatic brain injury: results of a randomized, controlled trial. American journal of physical medicine & rehabilitation / Association of Academic Physiatrists 2006;85(1):68-74.

108.       Brown TH, Mount J, Rouland BL, Kautz KA, Barnes RM, Kim J. Body weight-supported treadmill training versus conventional gait training for people with chronic traumatic brain injury. The Journal of head trauma rehabilitation 2005;20(5):402-15.

109.       Dobkin B, Barbeau H, Deforge D, Ditunno J, Elashoff R, Apple D et al. The evolution of walking-related outcomes over the first 12 weeks of rehabilitation for incomplete traumatic spinal cord injury: the multicenter randomized Spinal Cord Injury Locomotor Trial. Neurorehabilitation and neural repair 2007;21(1):25-35.

110.       Dobkin B, Apple D, Barbeau H, Basso M, Behrman A, Deforge D et al. Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology 2006;66(4):484-93.

111.       Geisler FH, Coleman WP, Grieco G, Poonian D. Measurements and recovery patterns in a multicenter study of acute spinal cord injury. Spine 2001;26(24 Suppl):S68-86.

112.       Geisler FH, Coleman WP, Grieco G, Poonian D. The Sygen multicenter acute spinal cord injury study. Spine 2001;26(24 Suppl):S87-98.

113.       Adams MM, Ditor DS, Tarnopolsky MA, Phillips SM, McCartney N, Hicks AL. The effect of body weight-supported treadmill training on muscle morphology in an individual with chronic, motor-complete spinal cord injury: A case study. The journal of spinal cord medicine 2006;29(2):167-71.

114.       Stevens JE, Liu M, Bose P, OSteen WA, Thompson FJ, Anderson DK et al. Changes in soleus muscle function and fiber morphology with one week of locomotor training in spinal cord contusion injured rats. Journal of neurotrauma 2006;23(11):1671-81.

115.       Ying Z, Roy RR, Edgerton VR, Gomez-Pinilla F. Exercise restores levels of neurotrophins and synaptic plasticity following spinal cord injury. Experimental neurology 2005;193(2):411-9.

116.       Clare TD, de Haviland Mee S, Belcher HJ. Rehabilitation of digital nerve repair: is splinting necessary? Journal of hand surgery (Edinburgh, Lothian) 2004;29(6):552-6.

117.       Fehlings D, Vajsar J, Wilk B, Stephens D, Oded BO. Anaerobic muscle performance of children after long-term recovery from Guillain-Barre syndrome. Developmental medicine and child neurology 2004;46(10):689-93.

118.       Forsberg A, Press R, Einarsson U, de Pedro-Cuesta J, Widen Holmqvist L. Impairment in Guillain-Barre syndrome during the first 2 years after onset: a prospective study. Journal of the neurological sciences 2004;227(1):131-8.

119.       Bernsen RA, de Jager AE, van der Meche FG, Suurmeijer TP. How Guillain-Barre patients experience their functioning after 1 year. Acta neurologica Scandinavica 2005;112(1):51-6.

120.       Bax M, Goldstein M, Rosenbaum P, Leviton A, Paneth N, Dan B et al. Proposed definition and classification of cerebral palsy, April 2005. Developmental medicine and child neurology 2005;47(8):571-6.

121.       Taub E, Ramey SL, DeLuca S, Echols K. Efficacy of constraint-induced movement therapy for children with cerebral palsy with asymmetric motor impairment. Pediatrics 2004;113(2):305-12.

122.       Eliasson AC, Bonnier B, Krumlinde-Sundholm L. Clinical experience of constraint induced movement therapy in adolescents with hemiplegic cerebral palsy--a day camp model. Developmental medicine and child neurology 2003;45(5):357-9.

123.       Deluca SC, Echols K, Law CR, Ramey SL. Intensive pediatric constraint-induced therapy for children with cerebral palsy: randomized, controlled, crossover trial. Journal of child neurology 2006;21(11):931-8.

124.       Eliasson AC, Krumlinde-sundholm L, Shaw K, Wang C. Effects of constraint-induced movement therapy in young children with hemiplegic cerebral palsy: an adapted model. Developmental medicine and child neurology 2005;47(4):266-75.

125.       Charles JR, Wolf SL, Schneider JA, Gordon AM. Efficacy of a child-friendly form of constraint-induced movement therapy in hemiplegic cerebral palsy: a randomized control trial. Developmental medicine and child neurology 2006;48(8):635-42.

126.       Naylor CE, Bower E. Modified constraint-induced movement therapy for young children with hemiplegic cerebral palsy: a pilot study. Developmental medicine and child neurology 2005;47(6):365-9.

127.       Gordon A, Connelly A, Neville B, Vargha-Khadem F, Jessop N, Murphy T et al. Modified constraint-induced movement therapy after childhood stroke. Developmental medicine and child neurology 2007;49(1):23-7.

128.       Brehm MA, Nollet F, Harlaar J. Energy demands of walking in persons with postpoliomyelitis syndrome: relationship with muscle strength and reproducibility. Archives of physical medicine and rehabilitation 2006;87(1):136-40.

129.       Hebert JS, Liggins AB. Gait evaluation of an automatic stance-control knee orthosis in a patient with postpoliomyelitis. Archives of physical medicine and rehabilitation 2005;86(8):1676-80.

130.       Boake C, Noser EA, Ro T, Baraniuk S, Gaber M, Johnson R et al. Constraint-induced movement therapy during early stroke rehabilitation. Neurorehabilitation and neural repair 2007;21(1):14-24.

131.       Wu CY, Chen CL, Tsai WC, Lin KC, Chou SH. A randomized controlled trial of modified constraint-induced movement therapy for elderly stroke survivors: changes in motor impairment, daily functioning, and quality of life. Archives of physical medicine and rehabilitation 2007;88(3):273-8.

132.       Guillot A, Collet C. Contribution from neurophysiological and psychological methods to the study of motor imagery. Brain research 2005;50(2):387-97.

133.       Solodkin A, Hlustik P, Chen EE, Small SL. Fine modulation in network activation during motor execution and motor imagery. Cereb Cortex 2004;14(11):1246-55.

134.       Liu KP, Chan CC, Lee TM, Hui-Chan CW. Mental imagery for relearning of people after brain injury. Brain Inj 2004;18(11):1163-72.

135.      Liu KP, Chan CC, Lee TM, Hui-Chan CW. Mental imagery for promoting relearning for people after stroke: a randomized controlled trial. Archives of physical medicine and rehabilitation 2004;85(9):1403-8.

136.       Nyberg L, Eriksson J, Larsson A, Marklund P. Learning by doing versus learning by thinking: An fMRI study of motor and mental training. Neuropsychologia 2006;44(5):711-7.

137.       Ehrsson HH, Geyer S, Naito E. Imagery of voluntary movement of fingers, toes, and tongue activates corresponding body-part-specific motor representations. Journal of neurophysiology 2003;90(5):3304-16.

138.       Lacourse MG, Turner JA, Randolph-Orr E, Schandler SL, Cohen MJ. Cerebral and cerebellar sensorimotor plasticity following motor imagery-based mental practice of a sequential movement. Journal of rehabilitation research and development 2004;41(4):505-24.

139.       Cramer SC, Orr EL, Cohen MJ, Lacourse MG. Effects of motor imagery training after chronic, complete spinal cord injury. Experimental brain research Experimentelle Hirnforschung 2007;177(2):233-42.

140.       Zanette G, Manganotti P, Fiaschi A, Tamburin S. Modulation of motor cortex excitability after upper limb immobilization. Clin Neurophysiol 2004;115(6):1264-75.

141.       Fiorio M, Tinazzi M, Aglioti SM. Selective impairment of hand mental rotation in patients with focal hand dystonia. Brain 2006;129(Pt 1):47-54.

142.       Sidaway B, Trzaska AR. Can mental practice increase ankle dorsiflexor torque? Physical therapy 2005;85(10):1053-60.

143.       Glover S, Dixon P, Castiello U, Rushworth MF. Effects of an orientation illusion on motor performance and motor imagery. Experimental brain research Experimentelle Hirnforschung 2005;166(1):17-22.

144.       Gentili R, Papaxanthis C, Pozzo T. Improvement and generalization of arm motor performance through motor imagery practice. Neuroscience 2006;137(3):761-72.

145.       Williams JG, Odley JL, Callaghan M. Motor Imagery boosts proprioceptive neuromuscular facilitation in the attainment and retention of range-of-motion at the hip joint. Journal of Sports Science and Medicine 2004;3(3):160-6.

146.       Hamel MF, Lajoie Y. Mental imagery. Effects on static balance and attentional demands of the elderly. Aging clinical and experimental research 2005;17(3):223-8.

147.       Bathalon S, Dorion D, Darveau S, Martin M. Cognitive skills analysis, kinesiology, and mental imagery in the acquisition of surgical skills. The Journal of otolaryngology 2005;34(5):328-32.

148.       Sharma N, Pomeroy VM, Baron JC. Motor imagery: a backdoor to the motor system after stroke? Stroke; a journal of cerebral circulation 2006;37(7):1941-52.

149.       Alkadhi H, Brugger P, Boendermaker SH, Crelier G, Curt A, Hepp-Reymond MC et al. What disconnection tells about motor imagery: evidence from paraplegic patients. Cereb Cortex 2005;15(2):131-40.

150.       Cramer SC, Lastra L, Lacourse MG, Cohen MJ. Brain motor system function after chronic, complete spinal cord injury. Brain 2005;128(Pt 12):2941-50.

151.       Malouin F, Richards CL, Doyon J, Desrosiers J, Belleville S. Training mobility tasks after stroke with combined mental and physical practice: a feasibility study. Neurorehabilitation and neural repair 2004;18(2):66-75.

152.       Kimberley TJ, Khandekar G, Skraba LL, Spencer JA, Van Gorp EA, Walker SR. Neural substrates for motor imagery in severe hemiparesis. Neurorehabilitation and neural repair 2006;20(2):268-77.

153.       Crosbie JH, McDonough SM, Gilmore DH, Wiggam MI. The adjunctive role of mental practice in the rehabilitation of the upper limb after hemiplegic stroke: a pilot study. Clinical rehabilitation 2004;18(1):60-8.

154.       Dijkerman HC, Ietswaart M, Johnston M, MacWalter RS. Does motor imagery training improve hand function in chronic stroke patients? A pilot study. Clinical rehabilitation 2004;18(5):538-49.

155.       Page SJ, Levine P, Leonard AC. Effects of mental practice on affected limb use and function in chronic stroke. Archives of physical medicine and rehabilitation 2005;86(3):399-402.

156.       Rode G, Klos T, Courtois-Jacquin S, Rossetti Y, Pisella L. Neglect and prism adaptation: a new therapeutic tool for spatial cognition disorders. Restorative neurology and neuroscience 2006;24(4-6):347-56.

157.       Muller-Putz GR, Scherer R, Pfurtscheller G, Rupp R. EEG-based neuroprosthesis control: a step towards clinical practice. Neuroscience letters 2005;382(1-2):169-74.

158.       Muller-Putz GR, Scherer R, Pfurtscheller G, Rupp R. Brain-computer interfaces for control of neuroprostheses: from synchronous to asynchronous mode of operation. Biomedizinische Technik 2006;51(2):57-63.

159.       Frak V, Cohen H, Pourcher E. A dissociation between real and simulated movements in Parkinsons disease. Neuroreport 2004;15(9):1489-92.

160.       Tamir R, Dickstein R, Huberman M. Integration of motor imagery and physical practice in group treatment applied to subjects with Parkinsons disease. Neurorehabilitation and neural repair 2007;21(1):68-75.

161.       Moseley GL. Graded motor imagery is effective for long-standing complex regional pain syndrome: a randomised controlled trial. Pain 2004;108(1-2):192-8.

162.       Moseley GL. Is successful rehabilitation of complex regional pain syndrome due to sustained attention to the affected limb? A randomised clinical trial. Pain 2005;114(1-2):54-61.

163.       Moseley GL. Graded motor imagery for pathologic pain: a randomized controlled trial. Neurology 2006;67(12):2129-34.

164.       Prange GB, Jannink MJ, Groothuis-Oudshoorn CG, Hermens HJ, Ijzerman MJ. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. Journal of rehabilitation research and development 2006;43(2):171-84.

165.       Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Archives of physical medicine and rehabilitation 2002;83(7):952-9.

166.       Reinkensmeyer DJ, Kahn LE, Averbuch M, McKenna-Cole A, Schmit BD, Rymer WZ. Understanding and treating arm movement impairment after chronic brain injury: progress with the ARM guide. Journal of rehabilitation research and development 2000;37(6):653-62.

167.       Hesse S, Schulte-Tigges G, Konrad M, Bardeleben A, Werner C. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Archives of physical medicine and rehabilitation 2003;84(6):915-20.

168.       Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza MC et al. Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. IEEE Trans Neural Syst Rehabil Eng 2005;13(3):311-24.

169.       Husemann B, Muller F, Krewer C, Heller S, Koenig E. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke; a journal of cerebral circulation 2007;38(2):349-54.

170.       Israel JF, Campbell DD, Kahn JH, Hornby TG. Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Physical therapy 2006;86(11):1466-78.

171.       Hornby TG, Zemon DH, Campbell D. Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury. Physical therapy 2005;85(1):52-66.

172.       Lin DH, Lin YF, Chai HM, Han YC, Jan MH. Comparison of proprioceptive functions between computerized proprioception facilitation exercise and closed kinetic chain exercise in patients with knee osteoarthritis. Clinical rheumatology 2007;26(4):520-8.

173.       Christou EA, Yang Y, Rosengren KS. Taiji training improves knee extensor strength and force control in older adults. The journals of gerontology 2003;58(8):763-6.

174.       Tsang WW, Hui-Chan CW. Effects of tai chi on joint proprioception and stability limits in elderly subjects. Medicine and science in sports and exercise 2003;35(12):1962-71.

175.       Tsang WW, Hui-Chan CW. Effects of exercise on joint sense and balance in elderly men: Tai Chi versus golf. Medicine and science in sports and exercise 2004;36(4):658-67.

广西澳洲幸运5开奖记录 浙江体彩6十1走势图 快3开奖结果查询河北省 2014最新时时程序 进球网东方拆局 重时时彩五星个位走势图 今天快乐十分钟开奖结果 重庆时时亏的原因 福建体彩3l选7走势 女人打麻将带什么招财 天天中合网